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Systems Engineering Programmatic Estimation Using Technology

Variance

Abstract

Unique and innovative system programmatic estimation is conducted using the variance of

the packaged technologies. Covariance analysis is performed on the subsystems and

components comprising the system of interest. Technological "return" and "variation"

parameters are estimated. These parameters are combined with the model error to arrive

at a measure of system development stability. The resulting estimates provide valuable

information concerning the potential cost growth of the system under development.

1.0 Introduction

Systems engineering (SE) is a field that is generally viewed as the process of formulating

and solving problems at a very high conceptual level. SE covers all phases of the life cycle

of a system. One phase of particular interest is that of system development. The

conceptual design of a system may or may not resemble the design at the end of the

system development phase. Moreover, the cost and schedule parameters established at the

beginning of development can vary significantly from those at system delivery. However,

the basic technologies for the final design are usually established fairly early on in the SE

process. What information can be learned from these technologies early on that will be

useful for long-term prediction in the system development phase?

The Complex Organizational Metric for Programmatic Risk Environments (COMPRt_)

tool utilizes technology return and variance in synthesizing programmatic elements into

predictions of expected cost growth as a measure of programmatic success. However,

COMPRI_ does not directly utilize technology return and variance in arriving at

probability statements concerning programmatic cost growth.

1.1 Study Objective

The objective of this study is to improve the understanding of the role of technology

return and variance parameters in predicting probability of success for system development

programs. This effort will help answer the following key questions:

1. Can technology return and variance parameters be used to gain insight into systems

development measures of performance, specifically probability of cost and schedule

growth?

2. If so, what parameters are significant, and how can they be used?

3. Do the results satisfy face validity?



1.2 Expected Significance

The expected significance of this research and development effort includes an improved

understanding of systems engineering design and development through the quantification

of probability measures of performance relating to technology return and variance

parameters.

1.3 Statement of Uniqueness

The combination of technology return and variance parameters with neural networks to

produce meaningful probability statements has not been previously applied to large

complex programs of the type that NASA frequently encounters.

2.0 Technical Results

2.1 Derivation�Implementation of Technology Return and Variance
Parameters

In this section, the method for utilizing technology return and variance parameters in the

prediction of probability of success for programs is developed. The method of application

is implemented and verified using'the available database and existing Pilot Study.

2.1.1 Current Prediction Method

Figure 2.1. l-1 provides the current configuration of the COMPRI_ model. Results from

the covariance analysis feed directly into the artificial neural network. This neural net

predicts expected cost growth. The expected cost growth, in combination with the neural

net model error, results in an "s-curve" prediction of probability of cost growth. Note, in

particular, that there is no direct link between the covariance analysis and the "s-curve."

The mathematics of the "s-curve" prediction show clearly this lack of a direct link. The

equation for prediction is given by:

P(CG < TCG)= NORMS( TCG- /_T.)
O'NN

where,

CG = actual (unknown) programmatic cost growth (%),

NORMS = standard normal distribution,

P = probability,

TCG = target cost growth (%),

_NN = expected cost growth (%) from neural net,



c_ -- neural net average error (%) in predicting cost growth.

/

$

Schedule -=

Technology

Organ;ation

ICovariance

/
II1=

Y

Neural Net

Figure 2.1.1-1. Current COMPRE Methodology Configuration

2.1.2 Expression of Probability Statement Using Technology Return and Variance

A direct link must be provided between the covariance analysis of Figure 2.1.1-1 and the

"s-curve" probability statement of the same figure. Thus, the probability of cost growth

would depend not only on the output and modeling error of the neural net, but also on the

"return" and variance (more specifically, standard deviation) of the technology package

utilized in the construction of the system. The general equation for such a linked

relationship is given below. It was the purpose of this study to determine and evaluate the

form of the function, f, in this relationship• An important consideration in determining the

form off is in the assumption of dependency among the "means" and "standard deviations"



involvedin this mathematicalexpression. For instance, are the neural net and covariance

standard deviations independent of one another? What about the means?

P(CG < TCG) = f (TCG, PUN, O'NN , PC' O'C )

where,

CG = actual (unknown) programmatic cost growth (%),

f= function,

P = probability,

TCG = target cost growth (%),

lac = expected value from covariance analysis,

_tz,_ = expected cost growth (%) from neural net,

_c = standard deviation from covariance analysis,

_ -- neural net average error (%) in predicting cost growth.

In fact, we may write the desired probability statement as the standard normal distribution
calculation:

P(CG < TCG) = NORMS( TCG - 'uT )

O-T

where,

CG -- actual (unknown) programmatic cost growth (%),

NORMS -- standard normal distribution,

P = probability,

TCG -- target cost growth (%),

laa-= expected total cost growth (%),

aT = total average error (%) in predicting cost growth.

Then, the question becomes how to calculate the total mean and standard deviation as a

function of those from the covariance analysis and neural net. If we merely were in a

situation where the sum of the random variables (from the covariance and neural net) were

of interest, then we would write:

#T = #c + #>,_v

o-2 = cr[, + a]: N + 2pc,_,rWO"cO',_

where, again, the subscripts C and NN refer to covariance and neural net, respectively,

and Oc,NN is the correlation between the covariance and neural net data. However, we are

not in a situation in which addition of the random variables is appropriate, since the
4



covariance analysis is an intermediate step in calculating the neural net results. Thus, we

are in a situation in which measurement error is the key consideration. The prediction of

cost growth from the neural net is still the best available estimate of expected value, but

the neural net error is only one contributor to the standard deviation of that estimated cost

growth. Thus, we see from Juran that:

/.17, =/.I_T

2
O-2 = O"2, + o-_r + pC,,_ro-CO-A_,

Now, we must determine how to calculate the correlation, pc,_. We may estimate this

correlation as the correlation between the covariance expected value and the neural net

expected value taken over the entire database of programs:

Pc,_w = P(l_c , ,t/NN )

or

PC,NN = 0.628

Then, our final form becomes:

fiT = fiNN

0_2 = 0__. + 0_2 + 0.6280_C0-N u

TCG - ,Uxu
P(CG < TCG)= NORMS(

%/0"2 + 0"2777 +0.6280-C0-NN

2.1.3 Application to MSRR-1 Pilot Study

For the MSRR-1 program, we have the following pertinent values:

_r¢_ = 12.6 %,

Cc = 13.64 %,

ONN ----5.0 %.

Substituting into the equation above, we get:

P(CG < TCG) = NORMS( .TCG
12.6i

15.93
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From Figure 2.1.3-1, we see that the 95% confidence level for cost growth is

approximately 39%. The 50% confidence level is, of course, equal to the expected value

of the neural net output, or a cost growth of 12.6%.
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Figure 2.1.3-1. MSRR-I Cost Growth Profile

3.0 Conclusions

,

.

The neural net estimate for expected cost growth of the program of interest remains

the best estimate for same. This estimate is unaltered by the presence of the

covariance analysis estimate for cost growth, since that estimate (and its correlation

with the neural net output) are accounted for directly in the final neural net estimate

for cost growth.

The standard deviation for programmatic cost growth is arrived at by including both

the neural net error and the covariance estimate for standard deviation. This is so,

because the neural net does not predict standard deviation directly, and, therefore, our

probability calculations must consider both sources of variation as well as their
correlation.



3. The MSRR-I expectedvalue and 95% confidenceestimatesfor cost growth are
significantlyalteredbythisrevisionto theCOMPRI_methodology.
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APPENDIX: Neural Net and Regression Models

A large number of neural net and regression models have been developed in this effort.

The regression models take the form:

CG=
n

Z kiC _, t p, era, ,;/r,Z_,
i=1

where,

C = program cost (1996 $M),

CG = program cost growth (%),

N = number of terms in regression equation,

t = program duration (years),

)_ = program chromatic number,

Z, = COMPRE technology return parameter,

a = COMPRI_ technology risk parameter,

and all other symbols are estimated parameters.

Note that for n -- 1, the resulting form is intrinsically linear through logarithmic

transformation. All other values for n result in an intrinsically nonlinear regression form.

One intrinsically linear form, which was found to be statistically significant is:

CG - t 1.6730.2.767,_-3.242 _ 16.8

This regression model is intuitively plausible, in that one would expect cost growth to tend

to increase with program duration and technology risk, and possibly decrease with

technology return. While the significance level for this model is 0.01, the correlation

coefficient is R = 0.57, showing that only about a third of the total statistical variation in

the data has been explained by this model. Furthermore, the average error (in cost

growth) for this model is 34.2% per program, which is unacceptably high for this author.

Figure A-I shows the fit of predicted to actual cost growth for the 31 programs in the
database.



A large numberof intrinsicallynonlinearmodels(n>l) were also developed,but none
achievedaverageerrorslessthan23%perprogram.

A numberof neuralnetmodelsweretrainedto thedatabaseof interest. Table A-1 shows

the connection weights for the best model. This model has a correlation of 0.97, and an

average error of 5% per program. It also fits more lower cost growth (less than 20%)

programs better than previously considered neural net models. Finally, this model is

superior to previous neural net models which involved transformations (sometimes called

squashing) to the covariance outputs prior to neural net input.

Although several programs are not well-fit (see Figure A-2), this is consistent with the

presumption that some programs have higher (or lower) achieved cost growth than their

respective cost, technology, and schedule parameters would indicate, even given perfect
information.

Finally, unlike previously considered neural nets, this neural net is also fully consistent

with the technology risk and return parameters resulting from the COMPRI_ covariance

analysis process. The neural net approach outperforms even intrinsically nonlinear

regression models (which also require a high degree of parameter training), because neural

nets synthesize information like a simultaneous system of equations, whereas the

regression approach involves estimating parameters for a single equation, which may not

be sufficient to capture complex phenomena.
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Table A-I. COMPRE Neural Net Connection Weights

Hidden

Layer or

Output
Node

Cost

Variable

Duration

Variable

COMPRE
Risk

Variable

(sigma)
40.821 40.35 2.20

2 -5.29 -33.40 19.26 29.63

3 4.61 -4.20 4.83 -9.30

COMPRE

Return

Variable

0ambda)
43.96

Chromatic

Number

Variable

(chi)
1.71

-26.92

6.61

-9.09

Bias Node

-12.40

6.74

Cost

Growth

(output

node)
17.40

6.58

0.64

4 0.72 18.33 4.67 -19.73 10.64

5 -8.72 17.75 -0.85 5.67 -46.66 2.90 -5.96

Cost N/A N/A N/A N/A N/A - 19.99 N/A

Growth

(output)

[IActual

--_--Predicted

Figure A-2. Cost Growth Fit for Neural Net
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